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Abstract

We study mappings between Riemannian 2-manifolds which have constant principal stretch-
ing factors (cps-mappings). Such mappings f can be described in terms of the relationship
between the geodesic curvature of the curves of principal strain at p and that of their images
at f(p). In the context of local coordinates this relationship takes the form of a nonlinear hy-
perbolic system, the blow-up properties of which depend on the Gaussian curvatures of the two
manifolds. We use the theory of such systems to study global existence when both manifolds
are the hyperbolic plane H2, and obtain a simple description of all cps-mappings of H2 onto
itself. We also obtain a distortion result for disks in H2, as well as some non-existence results
for cps-mappings of the Euclidean plane onto certain classes of manifolds. In addition, our
treatment of cps-mappings in H2 yields, virtually as a corollary, a generalization of a theorem of
C. Epstein to the effect that a curve in hyperbolic n-space whose geodesic curvature is bounded
by 1 must be simple.

§1 Introduction

Consider a thin liquid film which upon solidification acquires a cryptocrystalline structure, that
is, at each point a suitably oriented infinitesimal square of the original liquid becomes an (again,
suitably oriented infinitesimal) rectangular crystal whose side lengths are constant multiples of the
side length of the square. Such a process produces a deformation of the surface originally formed by
the liquid, and in this paper we examine the class of deformations - those having constant principal
strains - that can be realized in this manner. It turns out that the associated mappings are governed
by hyperbolic systems of partial differential equations, a circumstance which in retrospect is not
surprising since one would expect that singularities, in higher derivatives of the deformation, for
example, propagate along the sides of the microscopic crystals, that is, along the associated curves
of principal strain. This hyperbolicity in conjunction with the additional element of nonlinearity
underlies most of what follows.

To give the reader an idea of some of the relevant issues, we briefly describe the situation in
the planar context (see [Ge1] for further details). Let 0 < m1 < m2. A differentiable, orientation
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preserving mapping f of a domain U ⊂ R2 into R2 has constant principal stretches m1, m2 if there
are functions θ, θ on U such that its Jacobian Jf satisfies

Jf = T (−θ)S(m1,m2)T (θ) , (1.1)

where

T (θ) =

[
cos θ sin θ
− sin θ cos θ

]
and S(m1,m2) =

[
m1 0
0 m2

]
.

Throughout, such f will be called (m1,m2)-mappings, or less specifically cps-mappings (“cps”
for constant principal strain). This direct manner of expressing the condition that a mapping has
constant principal stretches m1,m2 turns out to be rather uninformative, it being far better to work
with the compatibility conditions for a matrix function to be a Jacobian; for this reason one adds
the additional hypothesis that Jf be locally Lipschitz continuous on U . (See the first paragraph
of §5 for comments about this regularity assumption.) A straightforward calculation shows that a
necessary and sufficient condition that locally Lipschitz functions θ and θ give the Jacobian of an
(m1,m2)-mapping (in a simply connected domain) via the formula (1.1) is that

D1(m1θ −m2θ) = 0 and D2(m2θ −m1θ) = 0 (1.2)

hold almost everywhere, where D1 and D2 denote differentiation in the directions eiθ and ieiθ,
respectively. These equations relate the curvatures of the curves (to be referred to henceforth as i-
characteristics) along which the stretching factor is mi and their images. Indeed, if the curvature of
the former at p ∈ U is κi and that of the latter at f(p) is κi, then (1.2) simply says that κi = κi/mj ,
where {i, j} = {1, 2}. These equations constitute a genuinely nonlinear diagonal hyperbolic system
for the pair of functions θ, θ, so that, in light of a general principle established by Lax [L], one
expects cps-mappings to display a marked tendency to form singularities. Specifically, the blow-up
law for system (1.2) says, in the case of sufficiently differentiable mappings (and actually for all cps-
mappings in the appropriate weak sense), that at each point p the derivative of κi in the direction
of the j-characteristic through p and toward the concave side of the i-characteristic through this
point is κ2i , from which it follows at once that the curvatures of both of the characteristics of f at
p are bounded above by 1/dist(p, ∂U). Two immediate consequences of this are (i) a cps-analogue
of Liouville’s theorem - the only cps-mappings of the entire plane onto itself are affine and (ii) the
compactness of the class of all (m1,m2)-mappings of U into R2 with respect to the topology of
uniform convergence of the first-order derivatives on compact subsets. This blow-up principle also
allows one to show that the radius of the largest concentric subdisk of the unit disk ∆ whose image
under all (m1,m2)-mappings f : ∆→ R2 is convex is

(
m1
m2

)2
. In fact, in conjunction with (1.2) the

growth law for the κi plays a decisive role in the analysis of other aspects of cps-mappings and of the
intimately related “principal strain line inclination function” θ (whose integral curves together with
their orthogonal trajectories form what is known in plasticity and optimum structure theory - see
[Hil] and [He] - as Hencky-Prandtl nets), such as boundary behavior ([Ge3], [Ge4]), the nature and
distribution of isolated singularities ([Ge3]), and the determination of all cps-self-homeomorphisms
of certain domains ([Ge4]). A number of these properties of cps-mappings are strikingly similar to
their conformal analogues.

In the present paper we examine some of these issues in the context of 2-dimensional mani-
folds. We begin in §2 by establishing the counterparts of (1.2) and the blow-up law, whose formal
derivations are somewhat more involved than in the planar case. In §3 we discuss the analytic
details necessary to deal with questions of global existence and behavior, and in addition analyze
the relationship between cps-mappings and a generalization of Hencky-Prandtl nets in the constant
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Gaussian curvature context; more than anything these considerations involve appropriate rewriting
of the equations derived in §2 in coordinate form so as to make manifest the exact nature of the un-
derlying hyperbolicity. In §4 we apply the results of §3 first to show that in certain situations there
exist no globally defined cps-mappings and then, in the special case of the hyperbolic plane H2,
to do the following: (i) completely describe the (wide) class of cps-mappings of H2 onto itself, (ii)
prove a generalization of a theorem of C. Epstein [E1], [E2] about the curvature of self-intersecting
curves in hyperbolic n-space Hn and (iii) derive an analogue for H2 of the planar radius of convexity
result mentioned in the preceding paragraph.

In the planar context one could consider in addition to cps-mappings other similarly defined
classes such as the one consisting of mappings with Jacobian of the form

Jf = T (−θ)S(m1(θ, θ),m2(θ, θ))T (θ) ,

for any given pair of everywhere distinct positive functions m1(θ, θ),m2(θ, θ) of period π in each
variable (that is, mappings for which the principal strains are given functions of the directions of
the principal strain lines and their images). Such a generalization is not possible in context of
Riemannian 2-manifolds owing to the absence of an absolute reference direction. Indeed, since the
principal stretches (and combinations of them) are the only intrinsically definable first-order pa-
rameters associated with a mapping between manifolds, in this context there are only two natural
classes of mappings defined by point-independent conditions on their Jacobians: conformal map-
pings and (m1,m2)-mappings. (We are here considering only families of mappings for which, loosely
speaking, the set of possible Jacobians at each point is governed by two parameters.) For this rea-
son, cps-mappings constitute a natural object of study above and beyond their interpretation as
deformations arising in certain physical situations.

§2 Formal Considerations

Let V and V be C∞ Riemannian 2-manifolds,both metric tensors being denoted by 〈·, ·〉, which
we sometimes subscript with V or V for additional clarity. Let U ⊂ V be a domain. The principal
stretches (henceforth to be called principal strains in slight abuse of accepted terminology) of a
mapping f : U → V at a point p ∈ V at which the Jacobian transformation Jf (p) is nonsingular are
the square roots of the eigenvalues of the transformation J∗f (p)Jf (p) of the tangent space of V at

p onto itself. Let U ⊂ V be a domain and m1,m2 be distinct positive constants. Then f : U → V
is an (m1, m2)-mapping if Jf is locally Lipschitz continuous and the principal strains of f are
everywhere given by the pair (m1, m2). As one can imagine from what was said above about the
planar case, the direct expression of this condition as a nonlinear 2×2 system of partial differential
equations in terms of local coordinate systems for V and V is not very revealing, although as we
shall explain in §3 a small amount of information can be gleaned from it. Here also it is much more
appropriate to consider a derived higher order system, specifically a second order one - which has
an elegant coordinate-free formulation - in which the geometric structure of V and V presents itself
in a most transparent way.

In dealing with the differential geometric aspects we shall, apart from minor variations, adhere
to the notation of Hicks [Hic]. In general, the counterpart for V of any object A associated with
V will be denoted by A. The Lie bracket of two vector fields X1, X2 will be denoted as usual by
[X1, X2]. It is clear that if U ⊂ V is a simply connected domain, then f : U → V is an (m1, m2)-
mapping if and only if its Jacobian Jf is locally Lipschitz continuous and there exist locally Lipschitz
continuous fields X1, X2 on U such that 〈Xi, Xj〉 = δij and 〈JfXi, JfXj〉 = mimjδij .

The unit vector JfXi/mi will be denoted by Xi. The covariant derivative in the direction X
of the vector field Y will be denoted by DXY . In addition, DXi (DXi

) will be abbreviated by Di
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(Di), and the same symbols DXα, Diα will be used to denote the derivative of the scalar function
α in the corresponding directions. We shall use the following facts (see [Hic]). If f : U → V is a
diffeomorphism and X, Y and Z are vector fields on V , then

Jf [X,Y ] = [JfX, JfY ] , (2.1)

DXY −DYX = [X,Y ] , (2.2)

and
DX〈Y, Z〉 = 〈DXY, Z〉+ 〈Y,DXZ〉 . (2.3)

Furthermore, if Y is a vector field and α, β are a scalar functions, then

DX(αY ) = (DXα)Y + αDXY , (2.4)

and
DαX+βZ(Y ) = αDXY + βDZY . (2.5)

Let {X1, X2} be an orthonormal pair of locally Lipschitz vector fields on some domain U in V .
The covariant derivative DlXk exists a.e., and the equations appearing in this paragraph hold a.e.
in U . In consequence of (2.3) we have that

0 = Dl〈Xj , Xk〉 = 〈DlXj , Xk〉+ 〈Xj , DlXk〉 ,

so that
〈DlXj , Xj〉 = 0 and 〈DlXj , Xk〉 = −〈DlXk, Xj〉 , (2.6)

and with the convention that {i, j} = {1, 2}, which will be in force throughout, this means that
there are locally bounded measurable scalar functions κi such that

DiXi = κiXj and DiXj = −κiXi . (2.7)

At a point p at which it exists (and it does so a.e. on U), κi(p) is the geodesic curvature of
the integral curve through p of the field Xi. Now consider the orthonormal fields {X1, X2} and
{X1, X2} associated with an (m1, m2)-mapping f : U → V . It follows from (2.2) and (2.7) that

[Xi, Xj ] = DiXj −DjXi = κjXj − κiXi , (2.8)

so that
κj = 〈[Xi, Xj ], Xj〉 .

By (2.8) and (2.1), which may be applied since f is a local diffeomorphism,

κj = 〈[Xi, Xj ], Xj〉 = 〈[JfXi/mi, JfXj/mj ], Xj 〉 = 〈[JfXi, JfXj ], Xj 〉/mimj

= 〈Jf [Xi, Xj ], Xj 〉/mimj = 〈Jf (κjXj − κiXi), Xj 〉/mimj = 〈κjJfXj − κiJfXi, Xj 〉/mimj

= 〈κjmjXj − κimiXi, Xj 〉/mimj = κj/mi .

We thus have the fundamental curvature equations

κj = κj/mi , a.e. in U , j = 1, 2 . (2.9)

We next consider how the curvatures change as we move along characteristics, and for the
time being we shall assume that the mapping in question is of class C3. (We shall explain in §3
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- see Theorem 2 - in what way this additional regularity requirement is in fact superfluous.) We
use the fact that the Gaussian curvature of a 2-dimensional manifold V at a point p is given by
〈R(X,Y )Y,X〉 for all orthonormal pairs X,Y of vectors in the tangent space of V at p, where

R(X,Y )Y = DXDY Y −DYDXY −D[X,Y ]Y .

In particular we have from (2.7) and (2.8)

R(X1, X2)X2 = D1D2X2 −D2D1X2 −D[X1,X2]X2 = D1(κ2X1) +D2(κ1X1)−Dκ2X2−κ1X1X2 ,

so that upon taking into account (2.4), (2.5) and (2.7) again, we have

R(X1, X2)X2 = κ1κ2X2 + (D1κ2)X1 − κ1κ2X2 + (D2κ1)X1 − κ22X1 − κ21X1 .

Thus, if K and K denote the Gaussian curvature on V and V , we have

K = 〈R(X1, X2)X2, X1〉 = D1κ2 +D2κ1 − κ22 − κ21 , (2.10)

and
K = 〈R(X1, X2)X2, X1〉 = D1κ2 +D2κ1 − κ22 − κ21 . (2.11)

In light of the fundamental relations (2.9) and the fact that Xi = JfXi/mi, it then follows that
Diκj(f(p)) = (Diκj(p))/m

2
i , so that equation (2.11) may be written as

K = (D1κ2)/m
2
1 + (D2κ1)/m

2
2 − κ22/m2

1 − κ21/m2
2 . (2.12)

Upon solving the linear system for D1κ2 and D2κ1 given by (2.10) and (2.12), we obtain

Djκi = κ2i + ci , i = 1, 2 , (2.13)

where

ci = m2
j

m2
iK −K
m2
i −m2

j

. (2.14)

We emphasize that when these blow-up equations (2.13) are written out fully in coordinate form
the functions giving the mapping itself appear as arguments of K, so that they do not in general
characterize the net of principal strain lines in an intrinsic fashion. Although they purport to tell
us something about how far along a characteristic from a given point a singularity - a point where
the mapping fails to be locally Lipschitz - must lie, their content in this regard is meaningless unless
one has information about K and K. For this reason, the most interesting cases by far are those
in which at least one of these curvatures is constant.

Given an orthonormal pair of fields X1, X2 on U ⊂ V we refer to arcs of the integral curves
of the field Xk as k-arcs. A domain Q ⊂ U will be said to be a characteristic quadrilateral of
X1, X2 (or of an associated cps-mapping) if ∂Q is a Jordan curve lying in D containing four points
a, b, c, d occurring in that order when ∂D is traversed (in one direction or the other) and such that
ab and cd are i-arcs, and bc and da are j-arcs. For such a Q we denote by Q+

i the i-side (i.e., ab
or cd) along which Xj points toward the inside of Q. This i-side of Q will be referred to as the
positive i-side. The other, negative, i-side will be denoted by Q−i . For an i-arc C we write

∆(C) =

∫
C
κids ,
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the unoriented arc length integral of κi along C. Let U ⊂ V be simply connected, and let f :
U → V be an (m1,m2)-homeomorphism. Without loss of generality we can assume that for each
characteristic quadrilateral Q ⊂ U the positive sides of Q are mapped onto the positive sides of the
image quadrilateral Q. Because the exterior angles of a characteristic quadrilateral are all π/2, the
Gauss-Bonnet formula says

∆(Q+
1 )−∆(Q−1 ) + ∆(Q+

2 )−∆(Q−2 ) = −
∫
Q
KdA . (2.15)

However, the cps-conditions and equations (2.9) together imply that

∆(Q
σ
i ) =

mi

mj
∆(Qσi ), i = 1, 2, σ = +,− ,

so that application of the Gauss-Bonnet formula to Q gives

m1

m2

(
∆(Q+

1 )−∆(Q−1 )
)

+
m2

m1

(
∆(Q+

2 )−∆(Q−2 )
)

= −m1m2

∫
Q
K(f)dA . (2.16)

Upon solving the system (2.15), (2.16) for the ∆(Q+
i )−∆(Q+

i ), we obtain

∆(Q+
i )−∆(Q−i ) = −

∫
Q
cidA , (2.17)

for every closed characteristic quadrilateral Q ⊂ U , where ci is given in (2.14). Although we have
only shown that (2.17) holds for quadrilaterals on whose closure f is one-to-one, these equations
can easily be seen to hold for any characteristic quadrilateral by the standard process of breaking
them up into smaller quadrilaterals. We note that in light of (2.15) and the fact that c1 + c2 = K
either of the equations (2.17) implies the other.

In the planar context a Hencky-Prandtl (HP) net on a simply connected domain D consists of
two mutually orthogonal one-parameter families of curves covering D with the property that for any
two fixed curves C1, C2 belonging to one of the families, the change in the inclination of the tangent
is the same along all subarcs of curves of the other family which join a point of C1 to a point of C2.
For simply connected domains, an orthogonal pair of curve families is an HP-net if and only it is the
net of principal strain lines of a cps-mapping. This gives an intrinsic characterization of principal
strain lines that, unlike one based (2.13), does not make reference to third order derivatives. In
order to obtain such an intrinsic characterization in the nonplanar context, one needs to assume that
the curvature K of the image manifold V is constant, and in order to avoid a clumsy formulation
as well as to preserve the symmetry of the discussion we shall assume that the curvature K of V is
constant as well. Thus for such a V we will say that two mutually orthogonal locally Lipschitz unit
vector fields X1, X2 on a simply connected domain U ⊂ V are an (m1,m2,K)-HP pair if either of
the equations,

∆(Q+
i )−∆(Q−i ) = −ciA(Q) ,

where A(Q) is the area of Q, is satisfied for all relevant quadrilaterals; here, of course, the curvatures
κi are defined by the first equation in (2.7). Thus we have derived

Theorem 1. If V and V have constant Gaussian curvature K and K, respectively, and f : V →
V is an (m1,m2)-mapping, then the corresponding principal fields X1, X2 are an (m1,m2,K)-HP
pair.
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In the next section (see Theorem 3) we show that, conversely, given an (m1,m2,K)-HP pair on
a simply connected domain U in V , there is an (m1,m2)-mapping f of U into a manifold V with
constant Gaussian curvature K, and that this mapping is unique up to rigid motions in V .

§3 Analytic Considerations

In investigating cps-mappings two fundamental directions are to be pursued. On the one hand,
one would like to say something about the global behavior of all possible cps-mappings of a given
domain, that is, to develop some elements of a distortion theory for such mappings. This aspect of
the theory is to be based on the three fundamental relations derived in the preceding section: the
curvature equations, the blow-up equations and the HP property, and an example will be discussed
§4. On the other hand, one should also be able to manufacture such mappings, that is, to construct
solutions to the corresponding differential equations, and this is the point we address in this section.

The most straightforward approach is that of [DY] in which one considers the differential equa-
tions which state that the eigenvalues of the transformation J∗f (p)Jf (p) (of the tangent space at p

onto itself) are the m2
i . Specifically, we consider coordinates (u1, u2) and (u1, u2) for neighborhoods

U,U in V, V respectively. For convenience we further assume that U = {(u1, u2)
∣∣|u1|, |u2| < ε}.

In terms of these coordinate systems let (f1, f2) = f : U → U be an (m1,m2)-mapping for which
the length change produced by f on the arc corresponding to u2 = 0 is everywhere strictly be-
tween m1 and m2. DeTurck and Yang showed that there are four pairs of real-analytic functions
F σk , 1 ≤ σ ≤ 4, k = 1, 2 of twelve variables such that for one of the four values of σ,

∂fk
∂u2

(u) = F σk (
∂f

∂u1
,m1,m2, G(u), G(f(u))), k = 1, 2 ,

where G and G each indicate the four elements of the metric tensors of V and V evaluated as
indicated. Each of these systems makes the required statement about the eigenvalues of J∗f (p)Jf (p),
and that there are four of them is simply a reflection of the fact that for any given m strictly between
m1 and m2, and any nonzero e ∈ R2, there are four distinct linear transformations T : R2 → R2

with principal stretches m1, m2 for which Te = me (two orientation preserving and two orientation
reversing). Conversely, in the analytic category the Cauchy-Kowalewski theorem implies that for
each of these four systems the initial value problem f(u1, 0) = f0(u1) has a unique local solution
provided that along the curve u2 = 0 the given initial mapping f0 changes arc length by factors lying
strictly between m1 and m2. DeTurck and Yang made the additional very important observation
that the linearizations of these four systems are diagonal hyperbolic, and this allowed them to
deduce local existence in the C∞ category. (Their work is actually considerably more general in
that it deals with mappings with distinct principal strains on manifolds of arbitrary dimension.) In
[G2] we dubbed the four Cauchy problems collectively as the DeTurck-Yang initial value problem,
a term we shall employ in what follows to refer to any one of them.

This approach to the construction of cps-mappings as solutions to first-order systems, however,
throws no light on global existence because it reveals nothing about how, where or why singularities
form. Information of this nature is, on the other hand, implicit in the blow-up equations and can
be put to use by basing the construction of cps-mappings either directly on them or, better still, on
the analytically simpler system of curvature equations. We pursue this latter option, but because
there are only two distinct characteristics and we are interested in working with the absolutely
minimal condition of locally Lipschitz continuity of Jf , we do so via the method of characteristic
coordinates. We begin by deriving the necessary equations.

Let U a be (small) neighborhood in V and let (u1, u2) be local coordinates for U . We denote
by ek = ek(p) the Euclidean unit vectors at p ∈ U . A right-hand orthonormal pair (with respect
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to the metric of V ) of vectors X1, X2 at u ∈ U is completely specified by the inclination θ of X1 to

the positive x1-axis. In other words, there are functions α
(i)
k (u, θ) such that in terms of θ

Xi =

2∑
k=1

α
(i)
k (u, θ)ek = Fi(u, θ) . (3.1)

If we are dealing with a real-analytic manifold, then the α
(i)
k are, of course, real-analytic. In the

discussion to follow, β will denote specific but not explicitly calculated (vector or scalar valued)
functions of arguments to be indicated; these functions will easily be seen to be real-analytic when
we are in that category and to be independent of the particular fields X1, X2. The reader is
advised that the functions denoted by this symbol may change from line to line and is reminded
that the symbol Di (Di) is used to denote both differentiation of scalar functions and covariant
differentiation of vector fields in the direction Xi (Xi). In the calculations to follow we use covariant
differentiation rules (2.4) and (2.5). We have

DiXi = Di(
2∑

k=1

α
(i)
k (u, θ)ek) =

2∑
k=1

(Diα
(i)
k (u, θ))ek + β(u, θ)

= (Diθ )

2∑
k=1

∂α
(i)
k (u, θ)

∂θ
ek + β(u, θ) .

Since κi = 〈DiXi, Xj〉, it follows that

κi = 〈
2∑

k=1

∂α
(i)
k

∂θ
ek, Xj〉Diθ + β(u, θ) = Pi(u, θ)Diθ + β(u, θ) , (3.2)

where Pi(u, θ) = 〈∂Xi
∂θ , Xj〉. Since

∂〈Xi,Xj〉
∂θ = 0, it follows that

Pj(u, θ) = −Pi(u, θ) . (3.3)

Because X1 is of the form β(u, θ)(cos θe1 + sin θe2),

P1 = 〈∂X1

∂θ
,X2〉 = 〈∂β

∂θ
(u, θ)(cos θe1 + sin θe2) + β(u, θ)(− sin θe1 + cos θe2), X2〉

= β(u, θ)〈− sin θe1 + cos θe2, X2〉 6= 0 ,

since − sin θe1 + cos θe2 is not a multiple of X1. Thus, in light of (3.3) we have

Diθ = Ri(u, θ)κi + Si(u, θ) , (3.4)

where Ri(p, θ) and Si(p, θ) are functions which for given V depend only on the arguments p ∈ V
and θ.

LetX1, X2 be an orthonormal pair of Lipschitz continuous fields on U ⊂ V and let Sε = {(t1, t2) :
−ε < t1, t2 < ε}. A bi-Lipschitz homeomorphism u : Sε → U is a characteristic coordinate mapping
if each segment ti = constant is carried onto a j-characteristic. The Lipschitz continuity of the
Xi, imply that such mappings exist locally. With reference to such a mapping, in what follows Yi
will denote the tangent field Juei, where the ei are the Euclidean unit vector fields on Sε; more
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concretely (DYiw)(u(t1, t2)) = ∂w(u(t1, t2))/∂ti for scalar functions w. Obviously, [Yi, Yj ] = 0.
Furthermore, we define yi(t1, t2) by

Yi(u(t1, t2)) = yi(t1, t2)Xi(u(t1, t2)) = yi(t1, t2)Fi(u(t1, t2), θ(u(t1, t2))) ,

where Fi is the vector-valued function appearing in (3.1). Note that Yi and yi only exist a.e. on
u(Sε) and Sε, respectively.

Assuming for the moment that u has enough regularity for the calculations to make sense, we
have from the rules (2.4) and (2.5) of covariant differentiation together with (2.7) that

DYjYi = (DYjyi)Xi − κjyiyjXj , (3.5)

and by symmetry that
DYiYj = (DYiyj)Xj − κiyjyiXi . (3.6)

(In these formulas yk = yk(u
−1(p)).)

Rule (2.2) and the fact [Yi, Yj ] = 0 imply equality of the right-hand sides of (3.5) and (3.6) from
which it follows that

∂yi
∂tj

= −κi yiyj . (3.7)

For pairs of functions η = (η1, η2), y = (y1, y2) we define

I1(η, y) =

∫ t2

0
η1(t1, t)y1(t1, t)y2(t1, t)dt (3.8)

I2(η, y) =

∫ t1

0
η2(t, t2)y1(t, t2)y2(t, t2)dt . (3.9)

We need the following lemma which says in what sense equations (3.7) hold in general.

Lemma 1. For almost all t1 ∈ (−ε, ε), y1 as a function of t2 satisfies

y1(t1, t2) = y1(t1, 0)− I1(κ, y) (3.10)

for almost all t2 ∈ (−ε, ε), and analogously for y2. (Here, κi = κi(u(t1, t2)).)

Proof. It is enough to show that this is the case for sufficiently small ε, since one can then patch
together small squares to conclude that it is so in the original square. If u is a characteristic coor-
dinate mapping, then so is v(t1, t2) = u(f1(t1), f2(t2)) for any pair of bi-Lipschitz functions f1, f2.
If wk is the yk for v, then

wk(t1, t2) = yk(f1(t1), f2(t2))f
′
k(tk) ,

from which one sees that it is sufficient to prove the statement in the case that y1 and y2 are
identically 1 on the lines t2 = 0 and t1 = 0, respectively. We can approximate the pair X1, X2 by

sequencesX
(n)
1 , X

(n)
2 of orthonormal C∞ fields which converge uniformly to theXi in a neighborhood

U of the closure of u(Sε), for which the corresponding curvatures κ
(n)
i are uniformly bounded

and converge to the κi in L1(Sε), and such that X
(n)
i (u(0, 0)) = Xi(u(0, 0)). We consider the

corresponding characteristic coordinate mappings u(n) with corresponding Y
(n)
i and y

(n)
i where y

(n)
i

is identically 1 on the line tj = 0. Since the y
(n)
i are smooth they satisfy (3.7) and consequently

y
(n)
i = 1− Ii(κ(n)i , y(n)), i = 1, 2 .

9



Clearly, u(n) → u uniformly on Sε. Since the fields X
(n)
1 , X

(n)
2 are uniformly Lipschitz continuous it

follows from elementary facts about the continuous dependence of solutions of ordinary differential
equations on the initial conditions (see [Hille, p.76, Theorem 3.1.1]) that the u(n) are also uniformly
Lipschitz continuous, so that the right hand sides of equations (3.11) are uniformly bounded on Sε.

Since y
(n)
i is identically 1 on the line tj = 0, this implies that for sufficiently small ε

0.9 < |Y (n)
i (u(t1, t2))| < 1.1

on Sε for all n, so that by reducing ε, if necessary, we may assume that the u(n) are uniformly
bi-Lipschitz on Sε. From this it follows that κi

(n)(u(n)(t1, t2)) tends to κi(u(t1, t2)) in L1(Sε). For
sufficiently small ε > 0, the system made up of (3.10) and its counterpart for y2 can easily be seen
to have a unique solution in L∞(Sε). Indeed, this solution is the L∞ limit of the sequence generated
by the iteration

y0 = (1, 1), yn+1 = (1, 1)− (I1(κ, yn), I2(κ, yn)) . (3.11)

Using this we can easily estimate ‖y − z‖L1 = ‖y1 − z1‖L1 + ‖y2 − z2‖L1 , where y and z are the
solutions corresponding to kernels κ and η, respectively. Let M be an upper bound for the L∞

norms of the components of κ and η. It follows immediately from (3.11) that for appropriately
small ε > 0 the L∞ norms of the components of the yn and zn are all at most 2. We have

‖y1,n+1 − z1,n+1‖L1 =

∫ ε

−ε

∫ ε

−ε

∫ t2

0
|κ1y1,ny2,n − η1z1,nz2,n|dτdt1dt2 ,

where all the functions in the integrands are evaluated at (t1, τ). Thus,

‖y1,n+1 − z1,n+1‖L1 ≤
∫ ε

−ε

∫ ε

−ε

∫ ε

−ε
|κ1y1,ny2,n − η1z1,nz2,n|dτdt1dt2

≤ 2ε

∫ ε

−ε

∫ ε

−ε
|κ1y1,ny2,n − η1z1,nz2,n|dτdt1

≤ 8ε‖κ− η‖L1 + 2εM

∫ ε

−ε

∫ ε

−ε
|y1,ny2,n − z1,nz2,n|dτdt1

≤ 8ε‖κ− η‖L1 + 4εM‖y1,n − z1,n‖L1 .

Obviously, the same bound holds for ‖y2 − z2‖L1 , so that

‖yn+1 − zn+1‖L1 ≤ 16ε‖κ− η‖L1 + 8εM‖yn − zn‖L1 .

Since y0 = z0 = (1, 1), it follows from this that

‖yn+1 − zn+1‖L1 ≤ 16ε‖κ− η‖L1/(1− 8εM) ,

so that
‖y − z‖L1 ≤ 16ε‖κ− η‖L1/(1− 8εM) . (3.12)

Because, as we have explained, κ(n) = κ(n)(u(n)(t1, t2)) tends to κ = κ(u(t1, t2)) in L1(Sε), it follows
from (3.12) that y(n) tends in the L1(Sε) norm to the (unique) solution y in L∞(Sε) of the system
(3.10) with the original κi’s. But then by replacing the κ(n) by an appropriate subsequence we can
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assume that for almost all fixed T ∈ (−ε, ε), y(n)(T, t2) and κ(n)(T, t2) converge to y(T, t2) and
κ(T, t2), respectively, in L1(−ε, ε). Thus, for such T it follows from (3.8) that

y1(T, t2) = 1−
∫ t2

0
κ1(T, t)y1(T, t)y2(T, t)dt ,

for almost all t2 ∈ (−ε, ε), and analogously for y2. Finally, we must show that these yi are our

original yi, defined by Yi = yiXi. In other words, we have to show that the y
(n)
i converge to the

yi. As we have seen, u(n) → u and X
(n)
k (u(n)(t1, t2))→ Xk(u(t1, t2)) uniformly on Sε, so that if we

denote by θ(n) the θ corresponding to X
(n)
1 , θ(n)(u(n)(t1, t2)) converges uniformly to θ(u(t1, t2)) on

Sε. We have

u(n)(t1, b)− u(n)(t1, a) =

∫ b

a
y
(n)
2 (t1, τ)F2(u

(n)(t1, τ), θ(n)(u(n)(t1, τ)))dτ .

But, as we saw, on almost all of the lines t1 = T , y(n)(T, t2) tends to y(T, t2) in L1(−ε, ε), so that
for such T we have by letting n→∞ that∫ b

a
y2(T, τ)F2(u(T, τ), θ(u(T, τ)))dτ = u(T, b)− u(T, a)

=

∫ b

a
y2(T, τ)F2(u(T, τ), θ(u(T, τ)))dτ ,

from which we conclude that y2(T, t2) = y2(T, t2) for almost all t2 ∈ (−ε, ε), and analogously for
y1. This yields the desired conclusion.

Let U and U be (small) neighborhoods in V and V , and let f : U → U be an (m1,m2)-
mapping. Let (u1, u2) and (u1, u2) be corresponding local coordinates, so that f is given by u =
f(u) = (f1(u), f2(u)). We consider a characteristic coordinate mapping u of Sε into U for the pair
X1, X2. Obviously, f ◦ u is a characteristic coordinate mapping for the pair X1, X2. Without loss
of generality we can assume that the yk, as well as the corresponding yk for f ◦ u are all positive.
Clearly, yk = mkyk. Let θ and θ be the inclination functions for these pairs of fields. We derive
equations satisfied by the ten functions

uk, yk, λk = κkyk, uk, θ, θ , (3.13)

of (t1, t2), k = 1, 2. Note that by the curvature equations (2.9) the counterpart λk = κkykof λk
is equal to miλi/mj . In what follows, when we say that ∂w/∂ti = w′ for some functionsw, w′

defined a.e. on Sε we mean that there is a function v equal to w a.e. on Sε such that for almost all
T ∈ (−ε, ε), v is absolutely continuous on the line tj = T and ∂v/∂ti = w′ holds in the strict sense
a.e. on it. In particular, the preceding lemma says that (3.7) holds in this sense.

Consider a rectangle αk ≤ tk ≤ βk, k = 1, 2 in Sε. Then since the arc length element ds = y1dt1
(a.e. along 1-characteristics) and dA = y1y2dt1dt2, (2.17) says that∫ β1

α1

κ1(t1, α2)y1(t1, α2)dt1 −
∫ β1

α1

κ1(t1, β2)y1(t1, β2)dt1 = −
∫ β2

α2

∫ β1

α1

c1y1y2dt1dt2 ,

and ∫ β2

α2

κ2(α1, t2)y2(α1, t2)dt2 −
∫ β2

α2

κ2(β1, t2)y2(β1, t2)dt2 = −
∫ β2

α2

∫ β1

α1

c2y1y2dt1dt2 ,

11



where

ci(t1, t2) = ci(u, u) = m2
j

m2
iK(u)−K(u)

m2
i −m2

j

.

Thus, the following equations hold almost everywhere on Sε:

λ1(t1, t2) = λ1(t1, 0) +

∫ t2

0
c1(t1, τ)y1(t1, τ)y2(t1, τ)dτ ,

and

λ2(t1, t2) = λ2(0, t2) +

∫ t1

0
c2(τ, t2)y1(τ, t2)y2(τ, t2)dτ ,

or in derivative form
∂λi
∂tj

= ciy1y2 . (3.14)

We also have that
∂u

∂t1
= y1F1(u, θ) , (3.15)

and since y1 = m1y1
∂u

∂t1
= m1y1F 1(u, θ) , (3.16)

where Fi(u, θ) is given in (3.1).
As an immediate consequence of Lemma 1 we also have

∂yi
∂tj

= −λiyj , (3.17)

(in the sense explained above, of course). Finally, in light of (3.4), we have D1θ = R1(u, θ)κ1 +
S1(u, θ), so that since D1θ = ∂θ

∂t1
/y1 we conclude

∂θ

∂t1
= λ1R1(u, θ) + y1S1(u, θ) , (3.18)

and analogously, using the fact that λk = miλi/mj ,

∂θ

∂t1
=
miλi
mj

R1(u, θ) + y1S1(u, θ) . (3.19)

We are now in a position to analyze the sense in which the blow-up equations are satisfied for cps-
mappings which are not necessarily C3. (The argument to follow contains an alternate derivation of
these equations based on the Gauss-Bonnet formula.) Let w be a finite valued measurable function
on an open set D ⊂ R2. Then for almost all p ∈ D it is true that for all η > 0

1

πδ2
lim
δ→0

A({ξ
∣∣∣ |w(ξ)− w(p)| > η} ∩∆(p, δ))) = 0 , (3.20)

where A denotes 2-dimensional measure, and ∆(p, δ) is the disk of radius δ about p. A point p
for which (3.20) holds will be called a point of approximate continuity of w. For an orthonormal
pair X1, X2 of Lipschitz continuous fields on U we denote by Ei = Ei(X1, X2) the image under u
of the set of points of approximate continuity of κi ◦ u, and it is immediate that this definition is
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independent of the coordinate system used. It is easy to see that if κ = κi a.e. in U and p is a
point of approximate continuity of κ then κi(p) exists and is equal to κ(p).

Theorem 2. Let f : U → U , be an (m1,m2)-mapping. Then for almost all p ∈ U , κi (as
defined by (2.7)) exists on the entire j -characteristic C through p , and the restriction of κi to C is
differentiable and satisfies the blow-up equation Djκi = κ2i + ci along it.

Proof. It is clearly enough to establish the conclusion in u(Sε) for any characteristic coordinate
mapping u. For convenience let i = 1. There is a set B ⊂ (−ε, ε) of measure 2ε and functions κ
and y which coincide with κ1 ◦u and y1 a.e. on Sε such that y and λ = κy are absolutely continuous
on all lines t1 = T ∈ B and satisfy ∂λ

∂t2
= c1y1y2 and ∂y

∂t2
= −λ1y2 in the strict sense a.e. on them.

We can assume in addition that for all T ∈ B almost all points of the 2-arc CT corresponding to
t1 = T are in E1. Then at all points (T, tj) at which the equations are satisfied, we have

∂κ

∂t2
=
∂(λ/y)

∂t2
=
y2c1y2 + λ2y2

y2
= (c1 + κ2)y2 ,

or, in other words,
D2κ ◦ u−1 = c1 + (κ ◦ u−1)2 . (3.21)

Since κ is absolutely continuous (3.21) holds everywhere on CT . It follows easily from this and the
fact that almost all points of CT are of points of approximate continuity of κ ◦ u−1 that in fact
all points of CT are points of approximate continuity of κ ◦ u−1(since the same equation holds on
almost all nearby 2-characteristics). But then from the comment contained in the last sentence
immediately preceding the statement of the theorem we conclude that (3.21) holds everywhere on
CT with κ ◦ u−1 replaced with κi, as desired.

Theorem 2 has the following important

Corollary (Compactness Principle). Let U be a domain in V and let P ⊂ V be compact.
Then the class of all (m1,m2)-mappings of U into V for which f(U) ⊂ P is compact in the topology
of uniform convergence of first derivatives on compact sets.

Proof. It is enough to see that for any p ∈ V and p ∈ V there are (small) coordinate
neighborhoods U1 and U1 such that the set C of all (m1,m2)-mappings f : U → P for which
in addition f(U1)⊂ U1, when f is expressed in coordinate form, have uniformly Lipschitz first
derivatives. For sufficiently small U1 Theorem 2 implies that κ1 and κ2 must be uniformly bounded
and the curvature equations then say that the same must be true for κ1 and κ2. But then (3.3) and
its counterpart for the κk and θ imply that the first derivatives of θ and θ are uniformly bounded
on U1 and U1 and in light of (3.1) and the fact that the Jacobian of f is completely determined by
the Xk and Xk it follows that the first derivatives of the f ∈ C are indeed uniformly Lipschitz.

We now examine the DeTurck-Yang initial value problem from the point of view of the equations
(3.14)-(3.19). Let C be a curve in U with Lipschitz continuous unit tangent and let (g1, g2) =
g : C → U have locally Lipschitz continuous derivative. We assume that the factor by which
g changes arc length (when calculated with respect to the metrics in U and U) is everywhere
strictly between m1 and m2. We want to find the (m1,m2)-mappings of a neighborhood of C onto
a neighborhood of g(C) which coincide with g on C. We limit consideration to mappings which
are orientation preserving with respect to the coordinate systems u and u; trivial modifications
cover the orientation-reversing mappings. Let T be a unit tangent field to C and let T be the
corresponding unit tangent field JgT/|JgT | to C = g(C). Let X1, X2 and X1, X2 be the fields
associated with an (m1,m2)-extension f of g. Let φ denote the angle, calculated with respect to
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the metric of V , between X1 and T ; without loss of generality we can assume that 0 < φ < π. Let
φ ∈ (0, π) be the angle between X1 and T . Then

m2
1 cos2 φ+m2

2 sin2 φ = |JgT |V and tanφ =
m2

m1
tanφ , (3.22)

so that there are two possible choices for continuous X1 along C, that is, two possibilities for θ
corresponding to an (m1,m2)-mapping of a neighborhood of C onto a neighborhood of g(C) and
coinciding with g on C. The second equation in (3.22) means that X1, (i.e., θ) is determined once
one of these θ is selected. It follows from the first of these equations that θ is a Lipschitz continuous
function of arc length along C, and then from the second equation that θ is also.

In order to proceed with the present discussion as well as to carry out some of the derivations
in §4 it is necessary to examine the relationship between the curvature of the curve C, that of its
image under the (m1,m2)-mapping f , and the values along C of the κi associated with f , which
by Theorem 2 exist a.e. on C. For the moment we assume that Jf is differentiable (as a function
of two variables) at almost all points of C. The following calculation will be valid a.e. on C. By
reversing the direction of some of the vectors X1, X2, X1, X2, if necessary, we can assume that

T = cosφX1 + sinφX2 and T = cosφX1 + sinφX2 . (3.23)

Let N = − sinφX1 + cosφX2 be the unit normal to C and let κ = κ(p) denote the geodesic
curvature of C defined by κN = DTT . Applying (2.4), (2.5) and (2.7) wee see that a.e. on C there
holds

κN = DTT = DTφ(− sinφX1 + cosφX2) + cosφDTX1 + sinφDTX2

= DTφN + cosφ(cosφD1X1 + sinφD2X1) + sinφ(cosφD1X2 + sinφD2X2)

= DTφN + κ1 cos2 φX2 − κ2 cosφ sinφX2 − κ1 sinφ cosφX1 + κ2 sin2 φX1

= DTφN + (κ1 cosφ− κ2 sinφ)N ,

so that
κ1 cosφ− κ2 sinφ = κ−DTφ . (3.24)

If κ and N are the analogous entities on V , then we also have

κ1 cosφ− κ2 sinφ = κ−DTφ ,

so that in light of the curvature equations (2.9)

κ1
m2

cosφ− κ2
m1

sinφ = κ−DTφ .

But then it follows from the second equation in (3.22) that

cos φ =
m1 cosφ√

m2
1 cos2 φ+m2

2 sin2 φ

and

sinφ =
m2 sinφ√

m2
1 cos2 φ+m2

2 sin2 φ
.

14



Since we also have also have

DTφ =
1√

m2
1 cos2 φ+m2

2 sin2 φ
DTφ(f(p)) ,

it therefore follows that

m1

m2
κ1 cosφ− m2

m1
κ2 sinφ =

√
m2

1 cos2 φ+m2
2 sin2 φ κ−DT tan−1

(m2

m1
tanφ

)
. (3.25)

Finally, we point out that this holds for all curves C with Lipschitz continuous tangent, as can be
seen by a simple approximation argument using Theorem 2.

It is now easy to cast the DeTurck-Yang initial value problem in a characteristic coordinate
setting. Let C be a curve in U with Lipschitz continuous unit tangent and let (g1, g2) = g : C → U
have locally Lipschitz continuous derivative. We associate (a small piece) of C with the diagonal
Lε = {(t,−t)|−ε < t < ε} of Sε via a one-to-one bi-Lipschitz function u(t,−t) of Lε into C having
Lipschitz continuous derivative. The functions φ, φ and consequently θ, θ also are determined on
C via equation (3.22) and then κ1 and κ2 are determined uniquely a.e. on C as the solution of the
system (3.24), (3.25), so that in effect these six functions, as well as u = (u1, u2) and u = (u1, u2)
are determined on Lε. By interchanging the roles of m1 and m2, and/or reversing the orientations
of the corresponding Xi’s as necessary, we can assume that 0 < φ < π/2, so that on the initial
line y1, y2 > 0. Simple geometry implies that on the initial line

y1(t,−t) =
∣∣du(t,−t)

dt

∣∣
V

cosφ , y1(t,−t) =
∣∣du(t,−t)

dt

∣∣
V

sinφ .

Thus, all of the functions (3.13) are given on the initial line; these initial values for uk, yk, uk, k =
1, 2 and θ, θ are continuous; but for λk = κkyk, they are merely bounded measurable functions. It
is well known that for a system of equations of the form

∂v

∂t1
= A(v, w) ,

∂w

∂t1
= B(v, w) , (3.26)

where v = (v1, . . . , vr) and w = (w1, . . . , ws) are functions of (t1, t2), and where A and B are
Lipschitz continuous, the initial value problem with bounded measurable initial datau(t,−t) =
u0(t), v(t,−t) = v0(t), |t| < ε is locally well posed. Here the solutions are bounded measurable
functions. The neighborhood of Lε in which the solution is guaranteed to exist depends, for a given
system (3.26), on the range of the initial functions {(u0(t), v0(t))|−ε < t < ε}. In the case of (3.14)
- (3.19) it is easy to see that the solution will exist in all of Sε if and only if the κi remain bounded
there. Furthermore, if we are in the C∞ or analytic category (i.e., A,B and the initial data belong
to one of these categories) then the solutions belong to the same category in any domain in which
they exist.

The only thing one must do to complete this treatment of the DeTurck-Yang initial value
problem is to show that the function f = u ◦ u−1 which maps a neighborhood of the piece u(Lε) of
C onto a neighborhood of g(u(Lε)) is an (m1,m2)-mapping. One would expect such to be the case,
but that this is in fact so has been substantially obscured by the calculations used to arrive at the
system. It is, however, not necessary to show directly that for a solution of this system, with initial
data arising from a mapping g of C into V in the way described above, f is necessarily an (m1,m2)-
mapping. Indeed, for C∞ data (i.e. C and g) one can conclude this solely from the basic principles
governing hyperbolic systems, as is explained fully in [Ge2, §3]. (It is because this argument is
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based on polynomial approximation and the principle of permanence of functional equations for
analytic functions that we have pointed out in several places that certain functions arising in the
calculations were analytic.) One can conclude in general that f is an (m1,m2)-mapping simply by
approximating the initial data by data in the C∞ category and using the compactness principle
together with the uniqueness of the solution of the initial value problem.

Theorem 2 tells us that a solution to a DeTurck-Yang initial value problem will exist in the
entire (two-sided) domain of dependence unless the solution of one of the ordinary equations Djκi =
κ2i + ci blows up along one of the characteristics along which this equation is valid. With obvious
modifications, an analogous statement for the characteristic initial value problem holds.

We will need

Lemma 2. Let C ⊂ V be an arc with Lipschitz continuous tangent and p ∈ C. Let κ1 and κ2
be any two bounded measurable functions on C. Let p ∈ V and let S be any tangent vector to V
at p with |S| ∈ (m1,m2). Then there is an open subarc C ′ containing p on which there are exactly
two f : C ′ → V with Lipschitz continuous derivative for which f(p) = p and Jf (p)T = S and such
that along C the solutions to the corresponding DeTurck-Yang initial value problems have these κi
as the curvatures of the corresponding curves of principal strain.

Proof. Let z = z(s), −ε < s < ε be an arc length parametrization of a subarc of C with
z(0) = p. If φ(s) = φ(z(s)), then (3.24) is simply the differential equation

φ′ = κ− κ1 cosφ(s) + κ2 sinφ(s) .

If we add the initial condition φ(0) = φ0, where φ0 ∈ (0, π) is either of the solutions of

m2
1 cos2 φ0 +m2

2 sin2 φ0 = |S| ,

then there is a unique Lipschitz continuous solution of the corresponding initial value problem on
some interval (−δ, δ). Let C ′ = z((−δ, δ)). Then it is easy to see that there is an f : C ′ → V with
f(p) = p and Jf (p)T = S such that the geodesic curvature κ(s) at f(z(s)) as stipulated above is
determined by (3.25), that is,

κ(s) =
(m1

m2
κ1 cosφ− m2

m1
κ2 sinφ+DT tan−1

(m2

m1
tanφ

))
/
√
m2

1 cos2 φ+m2
2 sin2 φ .

But since equations (3.24) and (3.25) uniquely define κ1 and κ2 once φ, κ and κ are given, the
solution of the DeTurck-Yang problem corresponding to initial mapping f (with the Xk, Xk chosen
in accordance with the normalizing stipulations implicit in (3.23)) will have principal strain line
curvatures coinciding along C ′ with the given κ1 and κ2.

We now discuss the characteristic initial value problem for (m1,m2)-mappings, which is often
easier to apply and more appropriate for the description of certain classes of such mappings as
well as of individual ones. Let Ck, k = 1, 2 be curves on V with arc length parametrizations
wk : [αk, βk] → V , αk < 0 < βk, such that the unit tangent vector fields Tk(s) are Lipschitz
continuous, C1 ∩ C2 = {p}, where p = w1(0) = w2(0), and 〈T1(0), T2(0)〉 = 0. Given p ∈ V and
orthonormal tangent vectors T 1, T 2 to V at p, the characteristic initial value problem for (m1,m2)-
mappings consists of finding such a mapping f for which the Ck are mk-characteristics and such
that f(p) = p, and JfTk(0) = T k. Of course, the possibility of high curvatures of the initial curves
Ck in general precludes the existence of a solution even in a neighborhood of C1 ∪ C2 , but it is
a relatively straightforward matter to see, by formulating this problem in terms of characteristic
coordinates via the system (3.14) - (3.19), that it is well-posed in a neighborhood of p. As with the
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Cauchy problem (i.e. the DeTurck-Yang problem) the key requirement is that the initial data for
the ten functions (3.13) be Lipschitz continuous, which will clearly be the case for the data we have
described. Here again one must make sure that the solution corresponds to an (m1,m2)-mapping.
However, as we have seen, one can avoid the possibly cumbersome calculations implicit in a direct
verification by appealing to the theory of hyperbolic systems. Specifically, in this case the desired
conclusion is a consequence of the fact that by using the blow-up equations (2.13) together with
Lemma 2 we can arrange initial data for a DeTurck-Yang initial value problem along a C∞ curve
through p whose tangent at p is orthogonal to neither of the Tk(0) in such a way that its solution
will have the desired characteristics.

The remainder of this section deals with the generalization of Hencky-Prandtl nets discussed at
the end of §2. Specifically, we shall prove

Theorem 3. Let U be a simply connected domain on a 2-manifold with constant Gaussian
curvature K, and let X1, X2 be an orthonormal pair of Lipschitz continuous fields on U with
curvatures κ1, κ2 defined by (2.7). Let m1,m2 > 0 and K be constants. Then the following are
equivalent.

(i) For almost all p ∈ U , κi is a differentiable function of arc length on the entire j-characteristic
through p along which it satisfies the equation Djκi = κ2i + ci, where ci is as given in (2.14). (Note
that we are only assuming that one of the two equations in (2.13) is satisfied, that the other also
holds will follow as a consequence.)

(ii) X1, X2 is an (m1,m2,K)-HP pair.

(iii) There is an (m1,m2)-mapping of U into a 2-manifold V with Gaussian curvature K whose
principal strain fields are X1 and X2.

Proof. (i)⇒(ii). Assume that the fields X1, X2 satisfy (i). For notational convenience we
deal with the case i = 1. Let u : Sε → U be a characteristic coordinate mapping for these fields
corresponding a small characteristic quadrilateral for which Lemma 1 holds; again without loss of
generality we may assume that the yi are positive. Then for i = 1, 2 there exists a function zi
which is equal to yi a.e. on Sε, which is absolutely continuous on almost all lines tj = constant
and satisfies (3.7) in the strict sense a.e. on them. Let T be such that the differential equation
for κ1 holds on the 2-arc corresponding to t1 = T and z1 satisfies (3.7) a.e. on this segment. Let
κ(t) = κ1(u(T, t)) and z(t) = z1(T, t). Then the equations say

κ′ = y2(T, t)(c1 + κ2) ,

and
z′ = −κzy2(T, t)

a.e. on (−ε, ε). Thus,

d(κz)

dt
= κ′z + κz′ = zy2(c1 + κ2)− κ2zy2 = c1zy2

, a.e. on (−ε, ε), so that since κz is Lipschitz continuous on (−ε, ε), it follows that for almost all T,
α2,β2 ∈ (−ε, ε) with α2 < β2 there holds

κ1(u(T, β2))y1(T, β2)− κ1(u(T, α2))y1(T, α2) = c1

∫ β2

α2

y1(T, t)y2(T, t)dt .

Since dA = y1y2dt1dt2 and |du/dt1| = y1dt1, integration with respect to T tells us that for
almost all α2 < β2 and any α1 < β1 in (−ε, ε), equation (2.17) holds with i = 1 for the
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characteristic quadrilateral u([α1, β1] × [α2, β2]). Since by hypothesis κ1 is continuous on almost
all 2-characteristics, this is then true for all α2 < β2. This shows that (ii) is true locally; that it is
true globally follows by breaking large quadrilaterals into smaller ones.

(ii)⇒(iii) Let X1, X2 be an (m1,m2,K)-HP pair, and again let u : Sε → U be a characteristic
coordinate mapping for these fields. Equation (3.14) holds since it is a consequence of the HP-
condition (2.17), and equations (3.15), (3.17) and (3.18) hold since they are consequences of the
definitions of the uk, yk, λk and θ. None of these equations involves any of the barred functionsuk, θ;
indeed, the only place any of these functions could enter these equations is in the ci appearing in
(3.14), and this does not happen because of our assumption that the Gaussian curvatures are
constant. Uniqueness for characteristic initial value problems tells us that the only solution is the
one associated with the given pair X1, X2. If we add equations (3.16) and (3.19) to the system
and solve the corresponding characteristic initial value problem with the same initial data, we get
an (m1,m2)-mapping of a neighborhood of u(0, 0). But the X1, X2 so arising are still the original
fields. This shows that the desired mapping exists in a neighborhood of each point of U ; that it
exists in all of this simply connected domain will then follow from the monodromy principle.

(iii)⇒(i). This is a special case of Theorem 2.

§4 Some Applications

4.1 NONEXISTENCE OF CPS-MAPPINGS

We shall use the blow-up equations to show that there is no cps-mapping of the Euclidean plane
onto certain (complete, noncompact) manifolds V . First of all, one notes that the solutions of the
ordinary differential equation y′ = y2 regular at 0 are

y(x) =
y(0)

1− y(0)x
,

so that if y(0) 6= 0 the solution blows up to the right or left of 0 according as y(0) is positive or
negative. From this it easily follows that if c(x) is a nonnegative continuous function on R which
is not identically 0, then the equation y′ = y2 + c(x) has no solutions on all of R.

We begin by noting that, as indicted in the introduction, there are no cps-mappings of all of
R2 onto itself other than the linear ones. In this case K as well as K are identically zero, so that
both blow-up equations reduce to κ′i = κ2i . From the above comments together with Theorem 2 it
follows that κi = 0 a.e. on each i-characteristic, which means that all characteristics are straight
lines. The linearity easily follows from this.

More interesting, perhaps, are situations in which there exist no cps-mappings of R2 onto V at
all. In light of the interpretation of such mappings as deformations produced by the cryptocrys-
talline solidification of a planar lamina, this rules out the attainment of certain configurations as
the result of such a process. Since V = R2, K is identically 0. To facilitate the discussion we assume

that m1 < m2. From (2.14) we have ci =
m2

im
2
j

m2
i−m2

j
K, so that

sgn(c1) = −sgn(K) and sgn(c2) = sgn(K) . (4.1)

We have:

(1) If K does not change sign on V and is not identically 0, then there are no cps-mappings
f : R2 → V . This follows immediately from the foregoing since if such an f were to exist in the case
of nonnegative K, for example, then by Theorem 2 and (4.1) there would exist a 1-characteristic
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with arc length parametrization z = z(s), −∞ < s < ∞, along which c2(z(s)) is nonnegative but
not identically 0, and along which dκ2(z(s))/ds = (κ2(z(s)))

2 + c2(z(s)), which is impossible, as
indicated in the preceding paragraph.

For the next case we consider V for which there is a C∞ homeomorphism u : R2 → V for which
there are a finite number of disjoint closed disks ∆k = ∆(pk, rk), k = 1, · · · , n (where ∆(a, r) is the
disk |p − a| ≤ r) such that u is an isometry on R2\ ∆1 ∪ · · · ∪ ∆n, and there is some ε > 0 for
which K(u(p)) < 0 for rk − ε < |p− pk| < rk, 1 ≤ k ≤ n. We regard the interiors of the u(∆k) as
being bumps on an otherwise planar surface. Such a bump can be obtained by replacing a disk of
radius r by the surface obtained by rotating the graph of y = q(x), 0 ≤ x ≤ r about the y-axis,
where q ∈ C∞(R) is even, and both q′′(x) > 0 and q′(x) < 0 on some (r′, r). These bumps have
the desired negative curvature in a vicinity of the boundary circle and any number of them can be
grafted into the plane, provided the corresponding closed disks are disjoint.

(2) There exist no cps-mappings f of R2 onto such a “bumpy” plane V . Again assume that such
an f existed. Let z = zk(s), k = 1, 2, be arc length parametrizations of the characteristics through
some point p0 lying inside the preimage of one of the bumps with zk(0) = p0 and increasing
s corresponding to the direction of Xk. The corresponding characteristic coordinate mapping
transforms the (t1, t2)-plane one-to-one onto R2. The curvatures of the lines of principal strain are
bounded since the preimage W of the union of the bumps is compact, and from the above discussion
of blow-up in the planar case |Diκj(p)| ≤ 1/dist(p,W ), a.e. in R2\W . From this it easily follows
that there is an N such that W ⊂ {u(t1, t2)

∣∣ |t1|, |t2| < N}. Let T = inf{t1 > 0
∣∣ u(t1,R)∩W = ∅}.

Then it follows from the assumptions and Theorem 2 that there are T ′ < T arbitrarily close to
T such that κ1 exists and satisfies the corresponding blow-up equation along the 2-characteristic
u(T ′,R) and c1(u(T ′, t2)) ≥ 0 for all t2 but is not identically 0, which is impossible.

4.2 THE HYPERBOLIC PLANE H2

We begin by examining blow-up of the solutions of the ordinary differential equations to which
the equations (2.13) reduce when both of the Gaussian curvatures K and K are constant. Upon
writing

γ2i = |ci| = m2
j

∣∣∣∣m2
iK −K
m2
i −m2

j

∣∣∣∣ ,
(2.13) becomes Djκi = κ2i ±γ2i , so we only have to look at the solutions of the elementary equations
κ′ = κ2 + γ2 and κ′ = κ2 − γ2, γ > 0, κ = κ(s). The general solution of the first is κ(s) =
γ tan(γs + C), so that the longest open interval in which a regular solution can exist has length
π/γ. On the other hand, the solutions of κ′ = κ2 − γ2 are of the form

κ(s) = γ
1 + C e 2γs

1− C e 2γs
, (4.2)

which is regular on the entire s-axis with range (−γ, γ) when C < 0, reduces to the constant γ
when C = 0, and has singularity at s0 = −(1/2γ) logC when C > 0, in which case the range
consists of the intervals (−∞,−γ), for s > s0, and (γ,∞), for s < s0. In particular, the solution
exists on all of R if and only if |κ(0)| ≤ γ.

Henceforth V = V = H2, so that K = K = −1. For convenience we also assume that m1 < m2,
which of course constitutes no loss of generality. We have

ci =
m2
j (1−m2

i )

m2
i −m2

j

,
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so that both of the equations (2.13) will be of the form κ′ = κ2 − γ2 (γ ≥ 0) if and only if

m1 ≤ 1 ≤ m2 . (4.3)

Specifically, for such m1,m2 they are

Djκi = κ2i − γ2i , where γi =

√
m2
j (m

2
i − 1)

m2
i −m2

j

. (4.4)

Consider the characteristic initial value problem with initial mk-characteristic Ck, k = 1, 2. Let
Ck have the arc length parametrization w = wk(s), αk < s < βk , where 0 ∈ (αk, βk) and where
p = w1(0) = w2(0). As was pointed out in the discussion of this problem in §3, we are in general
guaranteed a solution only in a neighborhood of p. However, if we assume (4.3) and that the
curvatures κk of the initial curves satisfy

|κk(s)| ≤ γk , a.e. on (αk, βk), k = 1, 2 ,

then the comment in the paragraph immediately preceding the statement of Lemma 2 implies that
the solution exists in the entire characteristic quadrilateral determined by the Ck. Among other
things this means that C1 and C2 are simple curves and C1 ∩ C2 = {p}. Thus, in light of the facts
that γ21 + γ22 = 1 and that γ1 can take any value in [0, 1] with appropriate m1 and m2 satisfying
(4.3), we have established the following

Theorem 4. Let C1 and C2 be curves in H2 whose arc length parametrizations have locally
Lipschitz derivatives and which meet orthogonally at p . Let λ1, λ2 > 0 satisfy λ21 + λ22 ≤ 1. If the
(unsigned) geodesic curvature of Ck is bounded above by λk, k = 1, 2, then these curves are both
simple and p is their only common point.

With exactly the same hypotheses on the curves this theorem holds in the n-dimensional hy-
perbolic space Hn as well. It suffices to prove that p is the only common point when C1 and C2

are both simple curves. Indeed, if we have established this and C1 and C2 satisfy the hypotheses
but C1 is not simple, then we can replace C2 by a geodesic E2 which joins two points of a simple
subarc E1 of C1 and thereby obtain a contradiction since the curvature of E2 is everywhere 0 and
that of E1 is bounded by λ1. Thus we shall assume that C1 and C2 are both simple. Assume that
n ≥ 3 and that they have a second point of intersection q. Let w = wk(s) be corresponding arc
length parametrizations with wk(0) = p and wk(ak) = q, k = 1, 2. A simple compactness argument
allows us to assume that the pair C1, C2 minimizes a1 + a2, i.e., the sum of the lengths of the two
arcs pq. Henceforth dist(z1, z2) will denote the geodesic distance between points z1, z2 ∈ Hn. Then
d
dsdist(p, wk(s)) > 0 on (0, ak), since were it equal to 0 for some b ∈ (0, ak), then Ck would be
orthogonal to the geodesic joining p to wk(b), and this would give us a new pair of simple curves
for which the sum of lengths of the two arcs joining the two intersection points is smaller than
a1 + a2. Let ε > 0. Then there exists a new pair of simple curves C ′1 and C ′2 with C∞ arc length
parametrizations vk on (−1, lk + 1) for which

(i) lk ≤ a1 + a2 + ε;
(ii) the corresponding curvatures κk(s) satisfy κk(s) ≤ λk + ε on (−1, lk + 1), k = 1, 2;
(iii) vk(0) = p, k = 1, 2;
(iv) vk(lk) = q, k = 1, 2;
(v) dist(p, vk(s)) increases on (0, lk);
(vi) C ′1 and C ′2 are orthogonal at their common initial point p;
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(vii) for no s ∈ (0, lk] is the geodesic which joins p to vk(s) tangent to C ′k at vk(s).
Let Vk(s), s ∈ (0, lk] be the unit tangent vector at p to the geodesic ray emanating from p and

passing through vk(s). It follows from (vii) that |V ′k(s)| > 0 on (0, lk]. It is also easy to see that
lims→0+ |V ′k(s)| exists. We claim that there exist sk ∈ (0, lk] such that

A(s1, s2) =

∫ s1

0
|V ′1(s)| ds+

∫ s2

0
|V ′2(s)| ds = π/2 , (4.5)

and
dist(p, v1(s1)) = dist(p, v2(s2)) . (4.6)

To see this, consider A(t1, t2) for (t1, t2) ∈ Q = [0, l1] × [0, l2]. Then A(0, 0) = 0 and, because C ′1
and C ′2 are orthogonal at p, A(l1, l2) ≥ π/2. Furthermore, by (vii) A(t1, t2) is strictly increasing in
each of its arguments. Thus the set S = {(t1, t2)

∣∣A(t1, t2) = π/2} is a curve which joins the union
of the left-hand side and bottom of Q to the union of its right-hand side and top. (This curve could
degenerate to the point (l1, l2).) But (v) implies that there are increasing continuous functions
τk, k = 1, 2, which map [0, 1] onto [0, lk] such that dist(p, v1(τ1(t))) = dist(p, v2(τ2(t))), t ∈ [0, 1].
This means that there must be a t ∈ (0, 1] such that (τ1(t), τ2(t)) ∈ S, so that (4.5) and (4.6) hold
with (s1, s2) = (τ1(t), τ2(t)).

We consider the following mappings from a domain in H2 into Hn. Let O ∈ H2 and T ∗ be a
fixed unit vector in the tangent space of H2 at O. We define the continuous function Tk from the
interval [0, tk] to the set of unit tangent vectors to H2 at O by T (0) = T ∗ and |T ′k(s)| = |V ′k(s)|,
where Tk(s) moves in the positive sense as s increases when k = 1, and in the negative sense when
k = 2. Let Gk(s) be the geodesic ray emanating from O in the direction Tk(s) and let Gk(s, σ)
be the point on Gk(s) at distance σ from O, 0 ≤ s ≤ sk, 0 < σ. Let Fk map the sector of H2

made up of the Gk(s), 0 ≤ s ≤ sk into Hn in such a way that Fk(Gk(s, σ)) is the point on the
geodesic ray emanating from p through vk(s) whose distance from p is σ. One easily sees that Fk is
an isometry (as a mapping between surfaces) and that it is locally one-to-one, so that F−1k is well
defined. Let Ck be the preimage of C ′k under Fk. Since Fk is an isometry, the curvature of Ck at
Fk(vk(s)) is the curvature of Ck at vk(s) when calculated from the point of view of C ′k as a curve in
the submanifold made up of the geodesics joining its points to p ; this curvature is at most κk(s).

Thus, the curvature of Ck is bounded above by λk+ε. Let C
′
2 be the curve onto which C2 is carried

when H2 is rotated about O through a positive angle of π/2. Then from our construction C1 and
C2, are simple arcs in H2 which meet orthogonally at O, intersect again at their other endpoint,
have lengths bounded by a1 +a2 + ε and have curvatures bounded respectively by λ1 + ε and λ2 + ε.
If we allow ε to tend to 0, then a simple compactness argument will provide curves in H2 which
satisfy the hypotheses of Theorem 4 in H2 but not the conclusion. This contradiction proves that
the that the theorem is indeed true in Hn. As an immediate consequence we obtain the following
result due to Epstein [E1], [E2].

Corollary. A curve in Hn whose curvature is everywhere bounded by 1 can not intersect itself.

We now give a very simple and quite explicit description of all of the cps-mappings of the entire
space H2 into itself. Actually, it is easy to see that if f : H2 → H2 is an (m1,m2)-mapping, then f
is one-to-one and onto, so that we shall speak of the cps-self-homeomorphisms of H2. Fix a point
O ∈ H2, and consider any (m1,m2)-mapping f : H2 → H2, again with the nonrestrictive assumption
that m1 < m2. Let Ck be the k-characteristic passing through O parametrized with respect to arc
length by wk, where w1(0) = w2(0) = O. Since all characteristics of f have infinite length in both
directions, it follows from the above discussion that (4.3) holds. It furthermore follows from the
initial comments that we must have |κk| ≤ γk a.e. on Ck, and conversely, the discussion of existence
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and blow-up of the preceding section shows that if these bounds are satisfied then there exists a
corresponding (m1,m2)-mapping, which, moreover, is uniquely determined by the two functions
κ1, κ2 once we assign the image of O and directions corresponding in the image to the tangent
directions of the Ck at O. (Note that by Theorem 4 the conditions |κk| ≤ γk automatically imply
that C1 and C2 are simple and only cross at O.) Thus we have the following

Theorem 5. Let O ∈ H2 be fixed. There is a one-to-one correspondence between cps-self-
homeomorphisms of H2 and 7-tuples (m1,m2, C1, C2, O, T 1, T 2), such that

(i) m1 ≤ 1 ≤ m2;
(ii) C1 and C2 are curves, of infinite length in both directions, with Lipschitz continuous unit tangent
vectors and whose (unsigned) geodesic curvatures κk are bounded by the numbers γk defined in (4.4);
(iii) O ∈ H2;
(iv) T 1, T 2 is an orthogonal pair of unit vectors in the tangent space to H2 at O.

For each such 7-tuple the mapping is the solution of the corresponding characteristic initial
value problem.

Before continuing we point out that the blow-up conditions allow one to completely answer the
following question: Given simple curves C and C on H2, of infinite length in both directions, and
whose arc length parametrizations have locally Lipschitz continuous derivatives, give necessary and
sufficient conditions on a mapping f : C → C for which |df/ds| is locally Lipschitz continuous and
satisfies m1 < |df/ds| < m2 a.e. on C, such that the corresponding DeTurck-Yang initial-value
problems have a global solution. To do this we proceed as follows. Let m1 ≤ 1 ≤ m2, since otherwise
there are no global (m1,m2)-mappings of H2 onto itself by Theorem 5. Let z(s), −∞ < s <∞ be
an arc length parametrization of a simple curve C in V and let z(s) = f(z(s)). Let T = T (s) be the
corresponding unit tangent vector to C at z(s), S = S(s) = JfT (s), and T = S/|S|. We assume
that |S(s)| lies everywhere between m1 and m2 and shall apply the notation, normalizations and
calculations of the paragraph immediately following the proof of the corollary to Theorem 2 in §3.
Rewriting (3.24) and (3.25) slightly we have

κ1 cosφ− κ2 sinφ = κ− φ′ (4.7)

and
m1

m2
κ1 cosφ− m2

m1
κ2 sinφ = |S|κ−DT tan−1

(m2

m1
tanφ

)
= |S|κ−m1m2φ

′/|S|2 , (4.8)

so that solving for κ1 and κ2 we find[
κ1
κ2

]
=

1

D

[
−m2 sinφ

m1
sinφ

−m1 cosφ
m2

cosφ

] [
κ− φ′

|S|κ−m1m2φ
′/|S|2

]

where D = (m2
1 − m2

2)
sinφ cosφ
m1m2

. Thus we find from our analysis of the blow-up of the κi that a
necessary and sufficient condition for the solution of the DeTurck-Yang initial-value problem to
exist in all of H2 is that the following hold a.e. for −∞ < s <∞:

|(κ− φ′)m2 sinφ

m1
− (|S|κ−m1m2φ

′/|S|2) sinφ| ≤ m2|D|
(

(1−m2
1)

m2
2 −m2

1

) 1
2

,

|(κ− φ′)m1 cosφ

m2
− (|S|κ−m1m2φ

′/|S|2) cosφ| ≤ m1|D|
(

(m2
2 − 1)

m2
2 −m2

1

) 1
2

.
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These bounds are, admittedly, not particularly revealing but they become considerably more so
when we limit ourselves to the case in which φ is constant, that is, when the initial mapping of
the curve C onto C has length change |S| = σ, a constant. Since in this case we have φ′ = 0, the
conditions simplify to

|m2κ−m1κσ| ≤
√

(m2
2 −m2

1)(1−m2
1) | cosφ| ,

|m1κ−m2κσ| ≤
√

(m2
2 −m2

1)(m
2
2 − 1) sinφ .

Finally, we derive some sharp values for the radius of convexity for cps-mappings in H2. Re-
turning to equations (4.7) and (4.8) above, we see that

κ =
1

|S|

(m1

m2
κ1 cosφ− m2

m1
κ2 sinφ+m1m2φ

′/|S|2
)
,

so that, since |S|2 = m2
1 cos2 φ+m2

2 sin2 φ, we have by (4.7) that

|S|3κ = m1m2(κ2 sin3 φ− κ1 cos3 φ+ κ) +
m3

1

m2
κ1 cos3 φ− m3

2

m1
κ2 sin3 φ .

Thus, if µ = (m2
m1

)2, we have

|S|3κ
m1m2

= κ− (µ− 1)(
κ1
µ

cos3 φ+ κ2 sin3 φ) , a.e. on C .

Let ∆ = ∆(R, a) denote the disk of radius R and centered at a in H2 and let f : ∆→ H2 be an
(m1,m2)-mapping, which, without loss of generality we assume to be orientation preserving. We
apply the above calculations to the curve ∂∆ with positive orientation so that N and N are inward
pointing normals (see (3.23) and the sentence which follows it). The curve ∂f(∆) is convex if and
only if κ = 〈DTT ,N〉 ≥ 0 a.e. on ∂∆, that is, if and only if

κ ≥ (µ− 1)(
κ1
µ

cos3 φ+ κ2 sin3 φ) . (4.9)

If p is a point of ∆ at distance d from ∂∆, then it follows from (4.2) that the greatest value that
κi(p) can have is

κmax
i = γi

e2γid + 1

e2γid − 1
= γi coth(γid) , (4.10)

since otherwise f would have to have a singularity inside ∆. It is well known and easily calculated
that the hyperbolic geodesic curvature k(r) of a circle of hyperbolic radius r is given by

k(r) =
1 + tanh2(r/2)

2 tanh (r/2)
.

It then follows from (4.8) that f(∆(r, a)) is convex provided that

k(r) ≥ (µ− 1) max{γ1
µ

coth(γ1(R− r)), γ2 coth(γ2(R− r))} . (4.11)

For fixed m1 ≤ 1 ≤ m2,R > 0 the right-hand side is increasing, so that since the left-hand side is
decreasing, there is a unique ρ = ρ (m1,m2,R) for which they coincide.
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Theorem 6. Let m1 ≤ 1 ≤ m2,R > 0. Then ρ (m1,m2,R) is the largest r such that all
(m1,m2)-mappings of ∆(R, a) into H2 map ∆(r, a) onto simply covered convex domains.

Proof. That the images of the concentric disk of radius ρ (m1,m2, r) are all convex follows
from the preceding discussion. Thus we only have to show that this ρ cannot be replaced by any
larger number. Let i be the index corresponding to the maximum in (4.11). Let Cj be a geodesic
through a and let q ∈ Cj be at distance ρ from a. Let d > R− ρ, and let Ci be a curve orthogonal
to Cj at q whose geodesic curvature is 0 everywhere except on a small neighborhood N of q along
which it is given by the expression in (4.10), with the “concave side” of N towards the shorter of
the two arcs into which q divides Cj . It is clear then that for sufficiently small N the solution f to
the characteristic initial value problem for (m1,m2)-mappings with these characteristics exists in
all of ∆(R, a). But given any r > ρ, for a d > R−ρ sufficiently close to R−ρ, (4.9) will be violated
for the circle centered at a and radius r, that is, the image of the interior of this circle will not be
a convex domain.

§5 Comments

In closing we touch on a few of the many questions about cps-mappings that naturally suggest
themselves. First of all, there are reasons to believe that the Jacobian of a C1 mapping between
2-manifolds having constant principal strains is necessarily locally Lipschitz continuous. A partial
result in this direction was given in [Ge1], where it was shown that in the planar case this conclusion
is valid under the stronger assumption that the derivatives of the mapping satisfy a Hölder condition
with exponent α > (

√
5− 1)/2, and the arguments given there can be strengthened to extend this

result to the general manifold context with the lower bound decreased to 1/2.
In §4 we only considered the radius of convexity problem in H2 under the assumption that

m1 ≤ 1 ≤ m2 because for other values of the principal stretches there are no (m1,m2)-mappings
of ∆(R, a) into H2 when R is sufficiently large. This leads one to the problem of determining
the radius of the largest disk on a complete manifold of constant Gaussian curvature K on which
there exist (m1,m2)-mappings into a manifold of constant Gaussian curvature K. In light of the
opening sentences of §1 the answer to this question, and more generally the determination of
maximal domains of existence for cps-mappings on manifolds, would have an obvious bearing on
the appearance of flaws in cryptocrystalline films.

Theorem 5 gives a complete description of all cps-mappings of H2 onto itself, and we have
done the same ([Ge4]) for two planar domains (the half-plane and the exterior of a disk), but it
would appear that the nonlinear hyperbolic nature of the underlying equations precludes such a
description in any appreciable generality. Moreover, it is most likely that even for many “nice”
domains in R2 there are no such mappings at all. These circumstances suggest two problems: (1)
Find other manifolds for which it is possible to describe all the cps-self-homeomorphisms. (2) Find
some simple conditions on a manifold which imply that this class is vacuous. In regard to (2) we
mention that we do not yet know whether there are any cps-mappings of the Euclidean disk onto
itself; we believe that there are none.

We end with a few words about cps-mappings in higher dimensions, that is, about mappings
with distinct constant principal stretches between n-dimensional manifolds. The treatment of §2
can be carried over to this more general context, but the equations that result are vastly more
complicated. In the first place, the higher dimensional counterpart of the system (2.9) of curvature
equations, although hyperbolic, is not diagonal, and in the second place the analogues of the blow-
up equations (2.13) involve not only the principal strain line curvatures but functions that give the
rate of rotation of the frames of principal strain directions as well (see [Ge 2]). An example of Yin
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[Y] shows that there are nonaffine cps-self-homeomorphisms of R3, and it would be of interest to
determine all such mappings. Indeed, most of the questions we have touched on in this paper can
be examined in the higher dimensional context as well.
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